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Modeling evaporation using a nonlinear diffusion equation
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A nonlinear model of the evaporation of a pure volatile liquid is presented in which the
moving liquid–vapour interface appears very naturally. The model gives the same results as
an earlier linear formulation for the Stefan diffusion problem, but far more simply.
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1. Introduction

Modeling the evaporation of a volatile liquid from a partially filled open container
has to confront certain problems with the moving liquid–vapor interface. Using the lin-
ear Fick equation with suitable initial boundary conditions gives a poor description of the
real process. The speed of propagation of the vapor, for instance, would be infinite. One
can overcome this problem by assuming the existence of a moving interface between the
liquid and vapor phases. Now, additional conditions for the solution at the interface must
be given. Such a description is often referred to as the Stefan diffusion problem [1,2].
Recently, Slattery and Mhetar [3] and Mhetar and Slattery [4] have used this formulation
to find the moving liquid–vapor interface. We do not want to repeat the mathematical
considerations of Slattery and Mhetar, but we would like to present a nonlinear model
to describe this same phenomenon. This model has been used recently with great suc-
cess to describe different gas and fluid diffusion phenomena, one example being dopant
diffusion through a semiconductor [5–8]. In this model, we do not need to postulate the
existence of the moving interface, because it appears naturally as a result of this new
description. The main difference between the linear Fick equation and this nonlinear
one is that without assuming the existence of the interface, in the Fick model the speed
of propagation of the vapor is infinite, whereas in the nonlinear one it is finite. This
latter fact by itself implies the existence of the interface. Using this model, we get the
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numerical calculation of the solutions, determining directly the difference between the
position of the liquid–gas interface at any time. We obtain the same results concerning
the interface as those obtained by Slattery and Mhetar [3] and Mhetar and Slattery [4].

2. Presentation of the phenomenon and its nonlinear description

We consider a very long tube that is fixed in laboratory frame of reference. This
tube is partially filled with a pure liquidA. The liquid is isolated from the remainder
of the tube, which is filled with a gas mixture ofA andB, by a closed diaphragm. The
entire system is maintained at a constant temperature and pressure. We assume thatA

andB form an ideal-gas mixture and thatB is insoluble in liquidA. At time t = 0,
the diaphragm is carefully opened and the evaporation ofA commences. We wish to
determine the concentration ofA in the gas phase as well as the position of the liquid–
gas interface as functions of time.

To compare results, we shall use the notation of Slattery and Mhetar.
For simplicity, we replace the finite gas phase with a semi-infinite gas that occupies

all space corresponding toz > 0. At all times, the positionz = 0 refers to the liquid–gas
interface. Att = 0, this position also denotes the diaphragm.

Let x(At)(t, z) be the mole fraction of speciesA in theAB gas mixture at point
z � 0 and timet > 0. Also assume that

x(A)(0, z) = x(A)0 for z > 0 (1)

and

x(A)(t,0) = x(A)eq for t > 0, (2)

wherex(A)0 andx(A)eq are constants.
We introduce the function

x(A)(t, z) � x(A)(t, z)− x(A)0 (3)

If we use the nonlinear diffusion model described by Okrasiński and Vila [13], then
x(A) should satisfy the following equation:

∂x(A)

∂t
= ∂

∂z

(
x m(A)

∂x(A)

∂z

)
, z > 0, t > 0, (4)

wherem is a positive parameter, with the following conditions:

x(A)(0, z) = 0 for z > 0 (1′)

and

x(A)(t,0) = x(A)eq− x(A)0 for t > 0. (2′)

Let us note that thanks to an easy scaling (see, for example, [9,10]) the right-hand side of
equation (4) is multiplied by the coefficient having the numerical value equal to one. It
has not any influence in the considerations concerning the interface. The comprehensive
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information about the mathematical literature devoted to (4) and related equations can
be found in [12].

3. Mathematical analysis of the proposed model

If we substitutex(A)/(x(A)eq− x(A)0) for x(A) and(x(A)eq− x(A)0)mt for t , then the
condition (2′) can be reduced to

x(A)(t,0) = 1 for t > 0. (2′′)

The problem (4), (4′), (2′′) has been considered by Okrasiński and Vila [11], who
show that the unique solution of (4), (1′), (2′′) has the form

x(A)(t, z) =



x(A)

(
z√
t

)
for

z√
t

� η0(m),

0 for
z√
t
> η0(m),

(5)

whereη0(m) is a constant depending onm.
As in [13], it can be proved that

x m(A)

(
z√
t

)
= η2

0(m)mv

(
1− z

η0(m)
√
t

)
, (6)

where

v(s) = s

2
+
∞∑
k=2

ak(m)s
k. (7)

The coefficientsak(m) are given by the formulae

a2(m)=− 1

4(m+ 1)
,

a3(m)= m

12(2m+ 1)(m+ 1)2
,

a4(m)= m

48(3m+ 1)(2m+ 1)(m+ 1)2
,

(n+1)(mn+ 1)an+1(m)= 2n+m(n2− 3n+ 2)

2(m+ 1)
an(m)

− 2
n−2∑
p=2

(p + 1)
(
n+ 1+ p(m− 1)

)
ap+1(m)an−p+1(m).

(8)

The constantη0(m) can be calculated by the formula

η0(m) = 1√
mv(1)

. (9)
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Figure 1. Points denote measured positions of the phase interfaceh (µm) as a function oft (s) for the
evaporation of methanol into air at 25.4◦C andP = 1.006× 105 Pa. The solid curve is the result of the

least square fit of these data with equation (11).

Going back to the problem, we have that the unique solution of (4), (1′), (2′) is
given by

x(A)(t, z) =




(x(A)eq− x(A)0)x(A)
(

z

(x(A)eq− x(A)0)m/2√t
)
,

z < (x(A)eq− x(A)0)m/2η0(m)
√
t ,

0, z > (x(A)eq− x(A)0)m/2η0(m)
√
t .

(10)

From this, we can determine directly the differenceh(t) between the position of
the liquid–gas interface at any timet > 0 andt = 0:

h(t) = −(x(A)eq− x(A)0)m/2η0(m)
√
t . (11)

This same formula in the Stefan diffusion problem is given with the help of the diffusion
coefficient.

4. Comparison with experimental data

We use the data presented in [3,4].
For the evaporation of methanol into air at 25.4◦C andP = 1.006× 105 Pa,

x(A)eq= 0.172,x(A)0 = 0, a least-squares fit givesh(t) = −1.34335
√
t (figure 1).

For the evaporation of methyl formate into air at 25.4◦C andP = 1.011× 105 Pa,
x(A)eq= 0.784,x(A)0 = 0, a least-squares fit givesh(t) = −11.8042

√
t (figure 2).
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Figure 2. Points denote measured positions of the phase interfaceh (µm) as a function oft (s) for the
evaporation of methyl formate into air at 25.4◦C andP = 1.011× 105 Pa. The solid curve is the result of

the least square fit of these data with equation (11).

If we can determinem, then formula (10) gives a very good approximation to the
mole fractionx(A) of suitable species.

To find the value ofm, we shall use equation (11). In the case of the evaporation
of methanol into air, we must solve form the equation

(0.172)m/2η0(m) = 1.34335, (12)

and in the case of the evaporation of methyl formate into air

(0.784)m/2η0(m) = 11.8042. (13)

Let

vn(1) = 1

2
+

n∑
k=2

ak(m) (14)

and

ηn(m) = 1√
mvn(1)

. (15)

Then instead of equations (12′) and (13′), we used the programMathematica to
solve

(0.172)m/2ηn(m) = 1.34335 (12′)

and

(0.784)m/2ηn(m) = 11.8042 (13′)

by changing the summation limitn.
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Table 1
Results of our calculations for the evaporation

of methanol into air.

h(t) = −1.34335
√
t

n m

3 0.575
4 0.5735
5 0.573365
6 0.573352
7 0.573358
8 0.573361
9 0.573362

10 0.573362
11 0.573362
12 0.573362

We used the following program:

a[2,m_]=-1/(4(m+1));
a[3,m_]=m/(12(2 m+1)(m+1)^2);
a[4,m_]=m(m+3)/(48(3 m+1)(2 m+1)(m+1)^3);
a[n_Integer,m_]=If[n>=5,

((2(n-1)+m((n-1)^2-3(n-1)+2))/(2(m+1)) a[n-1,m]-
2 Sum[(p+1)((n-1)+1+p(m-1))a[p+1,m] a[(n-1)-p+1,m],
{p,2,(n-1)-2}])/(((n-1)+1)(m (n-1)+1))];

v[m_,n_,s_]=If[n>=2,s/2+Sum[a[k,m] s^k,{k,2,n}],s/2];
c=Input["Insert c"];
nhu[m_,n_]=Sqrt[c^m/(m v[m,n,1])];
n=Input["Insert n"];
n0=Input["Insert nhu inicial"];
sol=FindRoot[nhu[m,n]==n0, {m,0.027}]

Tables 1 and 2 present the results of our calculations.
On the basis of these tables, we infer thatm = 0.573362 is the suitable parameter

for methanol, andm = 0.02708 for the case of methyl formate.
The program presented above is faster if the initial guessm = 0.57 for methanol

orm = 0.027 for the case of methyl formate. If we put another initial guess, then result
is the same but computer needs more time to calculate it. Since the left-hand sides of
equations (12′) and (13′) are given by strictly monotonous functions, then the solutionsm

are unique.

5. Conclusion

We have presented an application of a new nonlinear diffusion model to the evapo-
ration of a pure volatile liquid. It seems that this model describes the phenomenon very
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Table 2
Results of our calculations for the evaporation

of methyl formate into air.

h(t) = −11.8042
√
t

n m

3 0.0275495
4 0.0274071
5 0.027308
6 0.027378
7 0.0271877
8 0.0271522
9 0.0271273

10 0.0271102
11 0.0270988
12 0.0270914
13 0.0270869
14 0.0270843
15 0.0270830
16 0.0270825
17 0.0270825
18 0.0270827
19 0.0270832
20 0.0270835
21 0.0270840
22 0.0270842
23 0.0270843

well because the moving interface appears naturally without any additional assumptions,
as was shown by using it to describe the Stefan problem.
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Appendix. Notation

ak(m) transformed variable as defined in equation (8)
h height of phase interface
η0(m) constant depending onm (which can be calculated by

equation (9))
t time
v(s) transformed variable as defined in equation (7)



202 W. Okrasiński et al. / Modeling evaporation using a nonlinear diffusion equation

x(A) mole fraction of speciesA in the gas phase
x(A)0 initial mole fraction of speciesA in the gas phase
x(A)eq equilibrium mole fraction of speciesA in the gas phase at the

liquid–gas phase interface
x(A) transformed variable as defined in equation (3)
z vertical coordinate measured in the opposite direction of gravity

Miscellaneous symbols
∂ partial derivative

Superscripts
1,2,3, . . . , m exponents

Subscripts
0 initial condition
eq equilibrium
A, B components
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[11] W. Okrasínski and S. Vila, Determination of the interface position for some nonlinear diffusion prob-

lems, Appl. Math. Lett. 11 (1998) 85–89.
[12] A.S. Kalashnikov, Some problems of the qualitative theory of non-linear degenerate second order

equation, Russian Math. Surveys 42 (1987) 169–222.
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